Skip to main content
Log in

Salt marsh vegetation response to edaphic and topographic changes from upland sedimentation in a Pacific estuary

  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

This study investigated how changes in salt marsh soil properties and topography on sediment fans related to shifts in salt marsh plant community composition in the Elkhorn Slough Watershed, California, USA. Several sediment fans have formed in this watershed as soil eroding from farms moved downslope, filling marshes, mudflats, and channels. Sandy sediment deposition increased marsh plain elevation and altered edaphic properties by increasing bulk density and decreasing soil moisture, salinity, and soil nitrogen compared to reference sites. These changes created a strong wetlandupland gradient and influenced the development of well-defined vegetation zones from wetland to upland: pickleweed (Salicornia virginica), cattail (Typha spp.) and bulrush (Scirpus spp.), and arroyo willow (Salix lasiolepis). Based on statistical analysis, arroyo willow grew in a distinct edaphic environment, and its expansion into the salt marsh was restricted by elevation in tidal areas greater than 1.80 m NAVD 88, spring soil moisture levels lower than 20%, and year-round salinity levels lower than 2.67 dS/m. Cattail and bulrush were present in transitional environmental conditions with fluctuating salinity and at an elevation similar to that of the pickleweed community. The hydrogeologic setting played a part in this change, as the contribution of upland sandy soils likely facilitated the emergence of new edaphic properties including lower salinity, lower soil moisture, and reduced soil nutrients. The findings in this study underline the importance of on-going erosion-control efforts to estuarine conservation in Central California.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Allison, S. K. 1995. Recovery from small-scale anthropogenic disturbances by Northern California salt marsh plant assemblages. Ecological Applications 5: 693–702.

    Article  Google Scholar 

  • Allison, S. K. 1996. Recruitment and establishment of salt marsh plants following disturbance by flooding. American Midland Naturalist 136: 232–247.

    Article  Google Scholar 

  • Austin, M. P. and T. M. Smith. 1989. A new model for the continuum concept. Vegetatio 83: 35–47.

    Article  Google Scholar 

  • Barbour, M. G., J. H. Burk, W. D. Pitts, F. S. Gilliam, and M. W. Schwartz. 1999. Terrestrial Plant Ecology, third edition. Benjamin/Cummings, Menlo Park, CA, USA.

    Google Scholar 

  • Barbour, M. G. and C. B. Davis. 1970. Salt tolerance of five California salt marsh plants. American Midland Naturalist 84: 262–265.

    Article  Google Scholar 

  • Beare, P. A. and J. B. Zedler. 1987. Cattail invasion and persistence in a coastal salt marsh: The role of salinity reduction. Estuaries 10: 165–170.

    Article  Google Scholar 

  • Bedford, B. 1999. Cumulative effects on wetland landscapes: links to wetland restoration in the United States and Southern Canada. Wetlands 19: 775–788.

    Google Scholar 

  • Bertness, M. D. 1991a. Interspecific interactions among high marsh perennials in a New England salt marsh. Ecology 72: 125–137.

    Article  Google Scholar 

  • Bertness, M. D. 1991b. Zonation of Spartina patens and Spartina alterniflora in a New England salt marsh. Ecology, 138–148.

  • Blake, G. R. and K. H. Hartge. 1986. Bulk Density. p. 363–375, In A. Klute (ed.) Methods of Soil Analysis: Part 1: Physical and Mineralogical Methods. Monograph Number 9 (second edition). American Society of Agronomy — Soil Science Society of America, Madison, WI, USA.

    Google Scholar 

  • Boggs, S. 1987. Principles of Sedimentology and Stratigraphy. Merrill Publishing Company, Columbus, OH, USA.

    Google Scholar 

  • Boyer, K. E., P. Fong, R. R. Vance, and R. F. Ambrose. 2001. Salicornia virginica in a southern California salt marsh: seasonal patterns and a nutrient-enrichment experiment. Wetlands 21: 315–326.

    Article  Google Scholar 

  • Boyer, K. E. and J. B. Zedler. 1998. Effects of nitrogen additions on the vertical structure of a constructed cordgrass marsh. Ecological Applications 8: 692–705.

    Article  Google Scholar 

  • Brady, N. C. and R. R. Weil. 1999. The Nature and Properties of Soils, 12th edition. Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

    Google Scholar 

  • Breiman, L., J. H. Friedman, R. A. Olshen, and C. J. Stone. 1984. Classification and Regression Trees. Chapman and Hall, New York, NY, USA.

    Google Scholar 

  • Byrd, K. B., N. M. Kelly, and E. van Dyke. 2004. Decadal changes in a Pacific estuary: A multi-source remote sensing approach for historical ecology. GIScience and Remote Sensing 41: 285–308.

    Google Scholar 

  • Caffrey, J., M. Brown, W. B. Tyler, and M. Silberstein. (eds.). 2002. Changes in a California Estuary: a Profile of Elkhorn Slough. Elkhorn Slough Foundation, Moss Landing, CA, USA.

    Google Scholar 

  • Caffrey, J., S. Shaw, M. Silberstein, A. de Vogelaere, and M. White. 1997. Water Quality Monitoring in Elkhorn Slough: a summary of results 1988–1996. Elkhorn Slough Foundation and Elkhorn Slough National Estuarine Research Reserve, Watsonville, California, USA.

    Google Scholar 

  • Callaway, J. C., R. D. DeLaune, and W. H. Patrick. 1997. Sediment accretion rates from four coastal wetlands along the Gulf of Mexico. Journal of Coastal Research 13: 181–191.

    Google Scholar 

  • Chmura, G. L., R. Costanza, and E. C. Kosters. 1992. Modelling coastal marsh stability in response to sea level rise: a case study in coastal Louisiana, USA. Ecological Modelling 64: 47–64.

    Article  Google Scholar 

  • Connell, J. and R. Slatyer. 1977. Mechanisms of succession in natural communities and their role in community stability and organization. American Naturalist 111: 1119–1144.

    Article  Google Scholar 

  • De’ath, G. and K. E. Fabricus. 2000. Classification and regression trees: a powerful yet simple technique for ecological data analysis. Ecology 81: 3178–3192.

    Google Scholar 

  • Dickert, T. G. and A. E. Turtle. 1980. Elkhorn Slough Watershed: Linking the cumulative impacts of watershed development to coastal wetlands. Institute of Urban and Regional Development, University of California, Berkeley, CA, USA.

    Google Scholar 

  • Dickert, T. G. and A. E. Turtle. 1985. Cumulative impact assessment in environmental planning: A coastal wetland watershed example. Environmental Impact Assessment Review 5: 37–64.

    Article  Google Scholar 

  • Drury, W. and I. Nisbet. 1973. Succession. Journal of the Arnold Arboretum 54: 331–368.

    Google Scholar 

  • Ewing, K. 1996. Tolerance of four wetland plant species to flooding and sediment deposition. Environmental and Experimental Botany 36: 131–146.

    Article  Google Scholar 

  • Feldesman, M. R. 2002. Classification trees as an alternative to linear discriminant analysis. American Journal of Physical Anthropology 119: 257–275.

    Article  PubMed  Google Scholar 

  • Gardner, W. H. 1986. Water Content. p. 493–544, In A. Klute (ed.) Methods of Soil Analysis: Part 1: Physical and Mineralogical Methods. Monograph Number 9 (second edition). American Society of Agronomy — Soil Science Society of America, Madison, WI, USA.

    Google Scholar 

  • Gleason, R. A., J. N. H. Euliss, D. E. Hubbard, and W. G. Duffy. 2003. Effects of sediment load on emergence of aquatic invertebrates and plants from wetland soil egg and seed banks. Wetlands 23: 26–34.

    Article  Google Scholar 

  • Godwin, K. S., J. P. Shallenberger, D. J. Leopold, and B. L. Bedford. 2002. Linking landscape properties to local hydrogeologic gradients and plant species occurrence in minerotrophic fens of New York State, USA: A hydrogeologic setting (HGS) framework. Wetlands 22: 722–737.

    Article  Google Scholar 

  • Greer, K. and D. Stow. 2003. Vegetation type conversion in Los Penasquitos Lagoon, California: An examination of the role of watershed urbanization. Environmental Management 31: 489–503.

    Article  PubMed  Google Scholar 

  • Gustafson, S. and D. Wang. 2002. Effects of agricultural runoff on vegetation composition of a priority conservation wetland, Vermont, USA. Journal of Environmental Quality 31: 350–357.

    Article  CAS  PubMed  Google Scholar 

  • Hart, S. C., J. M. Stark, E. A. Davidson, and M. K. Firestone. 1994. Nitrogen mineralization, immobilization, and nitrification. p. 985–1018, In R. W. Weaver, S. Angle, P. Bottomley, D. Bezdicek, S. Smith, A. Tabatabai, and A. Wollum (eds.) Methods of Soil Analysis: Part 2: Microbiological and Biochemical Properties. American Society of Agronomy — Soil Science Society of America, Madison, WI, USA.

    Google Scholar 

  • Hopkinson, C. S. and J. J. Vallino. 1995. The relationship among man’s activities in watersheds and estuaries: a model of runoff effects on patterns of estuarine community metabolism. Estuaries 18: 598–621.

    Article  CAS  Google Scholar 

  • Howarth, R. W., J. R. Fruci, and D. Sherman. 1991. Inputs of sediment and carbon to an estuarine ecosystem: Influence of land use. Ecological Applications 1: 27–39.

    Article  Google Scholar 

  • Johnston, C. A. 2003. Shrub species as indicators of wetland sedimentation. Wetlands 23: 911–920.

    Article  Google Scholar 

  • Jurik, T. W., S. C. Wang, and A. G. van der Valk. 1994. Effects of sediment load on seedling emergence from wetland seed banks. Wetlands 14: 159–165.

    Article  Google Scholar 

  • Karrenberg, S., P. J. Edwards, and J. Kollmann. 2002. The life history of Salicaceae living in the active zone of floodplains. Freshwater Biology 47: 733–748.

    Article  Google Scholar 

  • Koning, C. O. 2004. Impacts of small amounts of sandy sediment on wetland soils and vegetation: results from field and greenhouse studies. Wetlands 24: 295–308.

    Article  Google Scholar 

  • Kuhn, N. L. and J. B. Zedler. 1997. Differential effects of salinity and soil saturation on native and exotic plants of a coastal salt marsh. Estuaries 20: 391–403.

    Article  Google Scholar 

  • McBride, J. and J. Strahan. 1984. Establishment and survival of woody riparian species on gravel bars of an intermittent stream. American Midland Naturalist 112: 235–245.

    Article  Google Scholar 

  • Mueller-Dombois, D. and H. Ellenberg. 1974. Aims and Methods of Vegetation Ecology. John Wiley & Sons, Inc., New York, NY, USA.

    Google Scholar 

  • Nakamura, F., S. Kameyama, and S. Mizugaki. 2004. Rapid shrinkage of Kushiro Mire, the largest mire in Japan, due to increased sedimentation associated with land-use development in the catchment. Catena 55: 213–229.

    Article  CAS  Google Scholar 

  • NOAA-NGS. 2005. Center for Operational and Oceanographic Products and Services/National Geodetic Survey (CO-OPS/NGS) Elevation Data. http://www.ngs.noaa.gov/cgi-bin/ngs_opsd.prl.

  • Noe, G. B. and J. B. Zedler. 2001. Spatio-temporal variation of salt marsh seedling establishment in relation to the abiotic and biotic environment. Journal of Vegetation Science 12: 61–74.

    Article  Google Scholar 

  • Orians, C. M., D. I. Bolnick, B. M. Roche, R. S. Fritz, and T. Floyd. 1999. Water availability alters the relative performance of Salix sericea, Salix eriocephala, and their F1 hybrids. Canadian Journal of Botany 77: 514–522.

    Article  Google Scholar 

  • Owen, C. R. 1999. Hydrology and history: land use changes and ecological responses in an urban wetland. Wetland Ecology and Management 6: 209–219.

    Article  Google Scholar 

  • Pennings, S. and R. Callaway. 1992. Salt marsh plant zonation: the relative importance of competition and physical factors. Ecology 73: 681–690.

    Article  Google Scholar 

  • Rhoades, J. D. 1982. Soluble salts. p. 167–179, In A. L. Page (ed.) Methods of Soil Analysis: Part 2: Chemical and microbiological properties. Monograph Number 9, second edition. American Society of Agronomy — Soil Science Society of America, Madison, WI, USA.

    Google Scholar 

  • Richards, L. A. (ed.). 1954. Diagnosis and Improvement of Saline and Alkali Soils, Agricultural Handbook No. 60. USDA, Agricultural Research Service, Soil and Water Conservation Research Branch, Washington, DC, USA.

    Google Scholar 

  • Sacchi, C. and P. Price. 1992. The relative roles of abiotic and biotic factors in seedling demography of arroyo willow (Salix lasiolepis: Salicaceae). American Journal of Botany 79: 395–405.

    Article  Google Scholar 

  • Sheldrick, B. H. and C. Wang. 1993. Particle-size distribution. p. 488–511, In M. R. Carter (ed.) Soil Sampling and Methods of Analysis. Canadian Society of Soil Science, Lewis Publishers, Ann Arbor, MI, USA.

    Google Scholar 

  • Snow, A. A. and S. W. Vince. 1984. Plant zonation in an Alaskan salt marsh. II. An experimental study of the role of edaphic conditions. Journal of Ecology 72: 699–684.

    Google Scholar 

  • StatacorpLP. 1985–2004. Intercooled Stata 8.2 for Windows. College Station, TX, USA.

  • Switala, K. 1999. Determination of Ammonia by Flow Injection analysis. QuikChem Method 10-107-06-1-A. Lachat Instruments, Milwaukee, WI, USA.

    Google Scholar 

  • Tabachnick, B. G. and L. S. Fidell. 1996. Using Multivariate Statistics, third edition. Harper Collins, New York, NY, USA.

    Google Scholar 

  • The R Foundation for Statistical Computing. 2004. R 1.9.1. www.r-project.org.

  • USDA-NRCS. 2002. The Elkhorn Slough Watershed Project 2000–2001 Report. Natural Resources Conservation Service, Salinas, CA, USA.

    Google Scholar 

  • USDA-NRCS. 2004. Soil Survey Geographic (SSURGO) Database for Monterey County, California. USDA Natural Resources Conservation Service, Fort Worth, TX, USA.

    Google Scholar 

  • USDA-NRCS and RCDMC (Resource Conservation District of Monterey County). 2004. Elkhorn Slough Watershed Permit Coordination Program 2003 Implementation Report. USDA Natural Resources Conservation Service and Resource Conservation District of Monterey County, Salinas, CA, USA.

    Google Scholar 

  • USDA-SCS. 1984. Strawberry hills target area. Watershed area study report. Soil Conservation Service, Monterey County, CA, USA.

    Google Scholar 

  • van Dyke, E. and K. Wasson. 2005. Historical ecology of a central California estuary: 150 years of habitat change. Estuaries 28: 173–189.

    Article  Google Scholar 

  • Vayssieres, M. P., R. E. Plant, and B. H. Allen-Diaz. 2000. Classification trees: an alternative non-parametric approach for predicting species distributions. Journal of Vegetation Science 11: 679–694.

    Article  Google Scholar 

  • Vivian-Smith, G. 1997. Microtopographic heterogeneity and floristic diversity in experimental wetland communities. Journal of Ecology 85: 71–82.

    Article  Google Scholar 

  • Wang, S. C., T. W. Jurik, and A. G. van der Valk. 1994. Effects of sediment load on various stages in the life and death of cattail (Typha × glauca). Wetlands 14: 166–173.

    Article  Google Scholar 

  • Ward, K. M., J. C. Callaway, and J. B. Zedler. 2003. Episodic colonization of an intertidal mudflat by native cordgrass (Spartina foliosa) at Tijuana Estuary. Estuaries 26: 116–130.

    Article  Google Scholar 

  • Wardrop, D. and R. Brooks. 1998. The occurrence and impact of sedimentation in central Pennsylvania wetlands. Environmental Monitoring and Assessment 51: 119–130.

    Article  Google Scholar 

  • Waters, I. and J. M. Shay. 1992. Effect of water depth on population parameters of a Typha × glauca stand. Canadian Journal of Botany 70: 349–351.

    Article  Google Scholar 

  • Watson, E. B. 2004. Changing elevation, accretion, and tidal marsh plant assemblages in a South San Francisco Bay tidal marsh. Estuaries 27: 684–698.

    Article  CAS  Google Scholar 

  • Weis, D. A., J. C. Callaway, and R. M. Gersberg. 2001. Vertical accretion rates and heavy metal chronologies in wetland sediments of the Tijuana Estuary. Estuaries 24: 840–850.

    Article  CAS  Google Scholar 

  • Wendt, K. 1999. Determination of Nitrate/Nitrite by Flow Injection Analysis (Low Flow Method). QuikChem Method 10-107-04-1-A. Lachat Instruments, Milwaukee, WI, USA.

    Google Scholar 

  • Werner, K. J. and J. B. Zedler. 2002. How sedge meadow soils, microtopography, and vegetation respond to sedimentation. Wetlands 22: 451–466.

    Article  Google Scholar 

  • Wetzel, P. R. and A. G. van der Valk. 1998. Effects of nutrient and soil moisture on competition between Carex stricta, Phalaris arundinacea, and Typha latifolia. Plant Ecology 138: 179–190.

    Article  Google Scholar 

  • Wilcox, D. A. 1986. The effects of deicing salts on vegetation in Pinhook Bog, Indiana. Canadian Journal of Botany 64: 865–874.

    Article  CAS  Google Scholar 

  • Winter, T. C. 1988. A conceptual framework for assessing cumulative impacts on the hydrology of nontidal wetlands. Environmental Management 12: 605–620.

    Article  Google Scholar 

  • Winter, T. C. 1992. A physiographic and climatic framework for hydrologic studies of wetlands. p. 127–148, In R. D. Robarts and M. L. Bothwell (eds.) Aquatic Ecosystems in Semi-arid Regions: Implications for Resource Management N.H.R.I. Symposium Series 7. Environment Canada, Saskatoon, SK, Canada.

    Google Scholar 

  • Woo, I. and J. B. Zedler. 2002. Can nutrients alone shift a sedge meadow towards dominance by the invasive Typha × glauca?. Wetlands 22: 509–521.

    Article  Google Scholar 

  • WRCC (Western Regional Climate Center). 2005. Annual Rainfall Data, Watsonville Waterworks Station 049473. http://www.wrcc.dri.edu/cgi-bin/cliMAIN.pl?cawats+nca.

  • Zedler, J. B., J. C. Callaway, J. S. Desmond, G. Vivian-Smith, G. D. Williams, G. Sullivan, A. E. Brewster, and B. K. Bradshaw. 1999. California salt marsh vegetation: an improved model of spatial pattern. Ecosystems 2: 19–35.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maggi Kelly.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Byrd, K.B., Kelly, M. Salt marsh vegetation response to edaphic and topographic changes from upland sedimentation in a Pacific estuary. Wetlands 26, 813–829 (2006). https://doi.org/10.1672/0277-5212(2006)26[813:SMVRTE]2.0.CO;2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1672/0277-5212(2006)26[813:SMVRTE]2.0.CO;2

Key Words

Navigation